2. L. Galvani, D.H.D. Roller, Commentary on the effect of electricity on muscular motion, Am. J.

Phys. 22 (2005) 40.

3. I. Tasaki, Physiology and electrochemistry of nerve fibers, Physiol. Electrochem. Nerve Fibers.

(1982). ISBN 9780126837803.

4. M. Jia, M. Rolandi, Soft and ion-conducting materials in bioelectronics: From conducting

polymers to hydrogels, Adv. Healthc. Mater. 9 (2020) 1901372.

5. D. Grieshaber, R. MacKenzie, J. Vörös, E. Reimhult, Electrochemical biosensors – Sensor

principles and architectures, Sensors. 8 (2008) 1400–1458.

6. H. Yuk, B. Lu, X. Zhao, Hydrogel bioelectronics, Chem. Soc. Rev. 48 (2019) 1642–1667.

7. T. Nezakati, A. Seifalian, A. Tan, A.M. Seifalian, Conductive polymers: Opportunities and

challenges in biomedical applications, Chem. Rev. 118 (2018) 6766–6843.

8. H.W. Guo, Z. Hu, Z.B. Liu, J.G. Tian, Stacking of 2D materials, Adv. Funct. Mater. 31 (2021).

https://doi.org/10.1002/adfm.202007810

9. P. Kang, M.C. Wang, S. Nam, Bioelectronics with two-dimensional materials, Microelectron.

Eng. 161 (2016) 18–35.

10. W.Z. Teo, E.L.K. Chng, Z. Sofer, M. Pumera, Cytotoxicity of exfoliated transition-metal di­

chalcogenides (MoS2, WS2, and WSe2) is lower than that of graphene and its analogues,

Chem. – A Eur. J. 20 (2014) 9627–9632.

11. G. Guan et al., Protein induces layer-by-layer exfoliation of transition metal dichalcogenides,

J. Am. Chem. Soc. 137 (2015) 6152–6155.

12. X. Li, Y. Gong, X. Zhou, H. Jin, H. Yan, S. Wang, J. Liu, Facile synthesis of soybean

phospholipid-encapsulated MoS2 nanosheets for efficient in vitro and in vivo photothermal

regression of breast tumor, Int. J. Nanomedicine. 11 (2016) 1819–1833.

13. G. Yang, H. Gong, T. Liu, X. Sun, L. Cheng, Z. Liu, Two-dimensional magnetic WS2@Fe3O4

nanocomposite with mesoporous silica coating for drug delivery and imaging-guided

therapy of cancer, Biomaterials. 60 (2015) 62–71.

14. H. Lin, X. Wang, L. Yu, Y. Chen, J. Shi, Two-dimensional ultrathin MXene ceramic na­

nosheets for photothermal conversion, Nano Lett. 17 (2017) 384–391.

15. J. Shao et al., Biodegradable black phosphorus-based nanospheres for in vivo photothermal

cancer therapy, Nat. Commun. 7 (2016). Article number: 12967.

16. M. Qiu et al., Novel concept of the smart NIR-light-controlled drug release of black

phosphorus nanostructure for cancer therapy, Proc. Natl. Acad. Sci. U. S. A. 115 (2018)

501–506.

17. L. Xu et al., 3D multifunctional integumentary membranes for spatiotemporal cardiac

measurements and stimulation across the entire epicardium, Nat. Commun. 5 (2014) 3329.

18. K.S. Novoselov et al., Electric field in atomically thin carbon films, Science. 306(80) (2004)

666–669.

19. T. Liu et al., Crested two-dimensional transistors, Nat. Nanotechnol. 14 (2019) 223–226.

20. H.J. Conley, B. Wang, J.I. Ziegler, R.F. Haglund, S.T. Pantelides, K.I. Bolotin, Bandgap en­

gineering of strained monolayer and bilayer MoS2, Nano Lett. 13 (2013) 3626–3630.

21. A. Chaves et al., Bandgap engineering of two-dimensional semiconductor materials, Npj 2D

Mater. Appl. 4 (2020) 29.

22. L. Li et al., Black phosphorus field-effect transistors, Nat. Nanotechnol. 9(5) (2014) 372–377.

23. J. Qiao, X. Kong, Z.X. Hu, F. Yang, W. Ji, High-mobility transport anisotropy and linear

dichroism in few-layer black phosphorus, Nat. Commun. 51(5) (2014) 1–7.

24. W. Wu et al., Piezoelectricity of single-atomic-layer MoS2 for energy conversion and pie­

zotronics, Nature. 514 (2014) 470–474.

25. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Photoluminescence from

chemically exfoliated MoS 2, Nano Lett. 11 (2011) 5111–5116.

26. C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic

strength of monolayer graphene, Science. 321(80) (2008) 385–388.

50

Bioelectronics